
A brief insight into
BRTECH1

a written-from-scratch idtech3- and
darkplaces-compatible 3D game engine

Who are we?

● Name: Benjamin Rosseaux
● Handle: BeRo
● Group: Farbrausch

Who are we?

● Name: Urs Ganse
● Handle: urs
● Group: mercury

Quake Arena III

http://www.youtube.com/watch?v=vaVhcnBiob0

What is Quake III Arena?

● A first-person-shooter game by id Software,
which was specifically designed for
multiplayer.

● Q3A allows players whose computers are
connected to a network to play against each
other in real time per a client–server model.

● Q3A uses a engine called “id Tech 3”.

id Tech 3

What was new at “id Tech 3” ? (render side)

● Unlike most other games released at the
time era, it requires an OpenGL-compliant
graphics accelerator to run.

● It does not include a software renderer, as
"id Tech 2" (Quake 2) did it yet.

What was new at “id Tech 3” ? (render side)

● The graphic concept of the engine is based
tightly around a "shader" system, where the
appearance of many surfaces are defined in
text files, called "shader scripts."

● But these “shaders” have nothing to do with
the today's “shader” term, instead rather with
the today’s “material” term.

What was new at “id Tech 3” ? (render side)

● id Tech 3 also introduced spline-based
curved surfaces in addition to planar
surfaces, which are responsible for most all
of the curved surfaces, which are present
within the Quake 3 game.

What was new at “id Tech 3” ? (render side)

● id Tech 3 also introduced to provide support for
models animated using frame-based linear
interpolated vertex animation with attachment tags
for to allow models to maintain separate torso and
leg animations and hold weapons.

● So Quake 3 was one of the first games, where the
player was able to look up and down and around as
the head, torso and legs are separate models.

What was new at “id Tech 3” ? (render side)

● id Tech 3 also introduced “volumetric fog”,
“mirrors”, “portals”, dynamic shadows and
CPU-side wave-form-based vertex
distortions.

So what is a “shader”?

● Shaders in the "id Tech 3" world are described and
rendered as several layers.

● Each layer contains a texture, a "blend mode"
which determines how to overlay it over the
previous layer, scrolling, scaling, rotation and
texture modes such as environment mapping.

● Each shader have a “sort key”.
● These shaders also can define several surface

properties such as collision behaviour flags.

Shader script example
textures/gothic_wall/streetbricks10_shiny
{

q3map_globaltexture
sort opaque
{

map $lightmap
tcmod turb sin .1 .1 0 0
tcmod scale 2 2
rgbgen identity

}

{

map textures/gothic_wall/streetbricks11.tga

rgbGen identity

blendfunc gl_one gl_src_color

}

{

map $lightmap

blendfunc gl_dst_color gl_zero

rgbgen identity

}

}

Shader & surface sorting behavior
● Sorting in the id Tech 3 Engine is an often misunderstanded

concept.
● id Tech 3 sorts the surfaces neither back-to-front nor front-to-back,

even not for transparent surfaces.
● id Tech 3 sorts the surfaces in order of the shaders in the shader

array, and id Tech 3 sorts the shaders in the order of the sort key
and then, indirect due to the data loading code structure, in the
order of the file names of the contained .script file and .pk3 file. It’s
important to know for the emulation of the id Tech 3 rendering bugs
in BRTECH1.

How does id Tech3 render the sky?

● The sky at id Tech 3 is a skydome, which will
be polygon-vertex-clipped on the CPU after
the BSP/PVS visible surface collection
process.

● The sky is rendered as first, even before the
opaque surfaces.

And portals and mirrors?

● Portals and mirrors are rendered before the
sky with help of OpenGL clip planes before
the sky sort key, so that the actual scene is
rendered just simply above it. Simple but
effective :-)

And volumetric fog?

● Volumetric fog in id Tech 3 can be only axis aligned,
since it is axis-plane based.

● If the camera is inside the fog volume, then
the objects inside the fog volume will be overlayed
with CPU-modulated fog textures.

● If the camera is outside the fog volume, then the fog
volume itself will be rendered as flat
axis-aligned plane with a CPU-modulated fog texture.

And the light grid?

● The light gris in id Tech 3 is a voxel-style 3D array
with the average light direction, light diffuse color and
ambient color per voxel.

● In id Tech 3 it will be interpolated trilinearly on the
CPU.

Darkplaces

http://www.youtube.com/watch?v=-U2rdg0jRcM

So what is Darkplaces?
● Dark Places is a heavily modified version of the Quake engine

(id Tech 1) by a developer with the name Forest "LordHavoc"
Hale for Linux, Mac OS X and Windows.

● It was extended by Quake2 and Quake3 BSP map support,
bloom, extended real-time lighting and shadow effects, as well
as particle effects, bump mapping, GLSL support, 32-bit alpha
channels and improved image representation for realistic
explosions, blood spatter and cartridges representations.

● Famous games, which uses Darkplaces: Nexuiz (the original
first version of it) and Xonotic.

BRTECH1

http://www.youtube.com/watch?v=loovX68WbL4

BRTECH1

● A written-from-scratch id Tech 3 asset
compatible engine with Darkplaces
extension support.

● Written in Object Pascal. Compilable with
Delphi >= 7 and FreePascal >= 2.6

● Main development time: July and August
Summer 2012

BRTECH1 renderer concept
● BRTECH1 renderer is a light-prepass / deferred lighting

renderer. So it’s basically a forward renderer combined
with the deferred shading concept idea. So it can be nearly
fully optical compatible with id Tech 3 but it can have also
newer deferred rendering concepts at the same time.

● BRTECH1 supports multiple dynamic realtime light
sources including soft shadows (point lights, spot lights,
directional lights and with dirty tricks as such as hidden
light blocker faces also (fake) area lights)

BRTECH1 renderer concept
● The vertex data for the vertex buffer object(s) are resorted and merged for modern GPUs

with different approachs (selected per GPU detection):

○ One big VBO for each material and BSP area just with material-splitted frustum
culling for each whole VBO per BSP area. (better for newer GPUs) (and a BSP area
is defined by the map designer, so that are no portals, instead more a disposable
one-way optimization hint for the render, eg. at id Tech3: while door closed => don’t
render things behind it, door opened uniquely => kill the hint flag for the rest of game
time, and many maps have no or just one BSP area for the whole map, but that here
is only a very rough description, what BSP areas are)

○ One VBO for each BSP leaf and material with normal PVS and frustum culling as id
Tech 3 do it also. (better for older GPUs)

BRTECH1 renderer concept
● The vertex data for the deform_* stuff (eg. deform_autosprite and

deform_autosprite2) will be also restructured / reprocessing for the
vertex shader in special ways for static VBOs. Each vertex has a one
more vec4 attribute called Middle, which contains for example for
deform_autosprite the middle of a face, and for deform_autosprite2
also the dominant edge length information in the w component of the
vec4 attribute. The vertex shader can emulate the original id Tech 3
behaviour of deform_* perfectly with this extra information per VBO
vertex.

http://www.youtube.com/watch?v=JAnl7BROdIg

What makes BRTECH1 different?
● The most important difference: It uses no fixed-pipeline

OpenGL. It’s completely GLSL-based.
● All id Tech 3 material shader texture modifier und vertex

deforms are processed on the GPU, not on the CPU,
including deform_autosprite and deform_autosprite2 !

● All vertex data are uploaded exactly once in one or more
complete static OpenGL vertex buffer objects. All further
dynamic content processing stuff are tasks for the GPU
itself (with help of vertex, geometry and fragment shaders)

http://www.youtube.com/watch?v=nubjG-3Nrpg

BRTECH1 material shaders

● BRTECH1 converts all id Tech 3 material shaders
to each one, or to more multiple if material-shader-
stage-collapsing fails, GLSL shaders.

● BRTECH1 has also a GLSL-shader cache for to
minimize the count of the GLSL program handle
counts.

● You can also freely add own GLSL-code to your
material shaders at BRTECH1.

BRTECH1 shadows
● Dynamic hard shadows are rendered with help of shadow

maps, where the caster objects will be grouped in own
shadow map render groups and sorted by viewer depth, a.
k.a. very cheap to implement but working quasi-cascaded
shadow map variant.

● Optional soft shadows are postprocess-rendered by
blurring the hard shadows in screen space with help of
PCSS-like blocker search.

BRTECH1 wireframe rendering

● Wireframes without fixed-pipeline with help
of barycentric coordinates

Image source: codeflow.org

#extension GL_OES_standard_derivatives : enable

vec3 d = fwidth(vBC);
vec3 a3 = smoothstep(vec3(0.0), d*1.5, vBC);
float edgeFactor = min(min(a3.x, a3.y), a3.z);

BRTECH1 dynamic model lighting

● For additional lighting of models, BRTECH1
converts the light grid from the .BSP file to a
voxel-style 3D texture.

● Each voxel is splitted in two 3D RGBA8
pixel/voxel in two 3D texture height halfs:
○ Ambient color and light direction longitude (y: 0.0 … 0.5)
○ Diffuse color and light direction latitude (y: 0.5 .. 1.0)

● These informations are then used for the per-pixel-lighting in the
fragment shader.

http://www.youtube.com/watch?v=Dw_sYxaERn8

BRTECH1 portals and mirrors

● Portals and mirrors will be rendered as
separate FBO render-to-texture passes
before the actual render pass (with
projection matrix manipulation based clip
plane for to avoid hidden overdraw) and then
displayed as normal surface textures in the
actual scene.

BRTECH1 fog

● Volumetric fog is rendered almost in the
same as id Tech 3 do, with the exception,
that it is fragment-shader-based instead
CPU-based fog texture pixel content
modulation.

BRTECH1 sky rendering

● The sky will rendered after all opaque
surfaces instead before all opaque surfaces
as Id Tech 3 did it.

● Together with stencil buffer masking of the
sky-mark-draw-mask-faces to avoid sky-
shows-through-artifacts at cracks and micro-
polygon-holes on the opaque surfaces.

BRTECH1 sound

● The BRTECH1 sound engine has 3D HRTF
stereo rendering, doppler effect, underwater
simulation...

Demo time!
or also: make a demo about it! :-)

If you do want to use BRTECH1 for your game (commerical
or freeware), because you do want to use the GPL’ed
GTKradiant and the other GPL’ed idTech tool chain but
avoid the original id Tech license fees, then you can just
contact me, and I will resume the BRTECH1 development
for the yet missing network code...
But attention, the game logic has to be implemented in
(Object) Pascal. :-D

One more thing

Questions?

Thank you!

